Type: huggingface.image_to_image.StableDiffusionControlNetImg2Img

Namespace: huggingface.image_to_image

Description

Transforms existing images using Stable Diffusion with ControlNet guidance. image, generation, image-to-image, controlnet, SD, style-transfer

Use cases:
- Modify existing images with precise control over composition and structure
- Apply specific styles or concepts to photographs or artwork with guided transformations
- Create variations of existing visual content while maintaining certain features
- Enhance image editing capabilities with AI-guided transformations

Properties

Property Type Description Default
model hf.stable_diffusion The model to use for image generation. {'type': 'hf.stable_diffusion', 'repo_id': '', 'path': None, 'variant': None, 'allow_patterns': None, 'ignore_patterns': None}
variant Enum['default', 'fp16', 'fp32', 'bf16'] The variant of the model to use for generation. fp16
prompt str The prompt for image generation. ``
negative_prompt str The negative prompt to guide what should not appear in the generated image. ``
seed int Seed for the random number generator. Use -1 for a random seed. -1
num_inference_steps int Number of denoising steps. 25
guidance_scale float Guidance scale for generation. 7.5
scheduler Enum['DPMSolverSDEScheduler', 'EulerDiscreteScheduler', 'LMSDiscreteScheduler', 'DDIMScheduler', 'DDPMScheduler', 'HeunDiscreteScheduler', 'DPMSolverMultistepScheduler', 'DEISMultistepScheduler', 'PNDMScheduler', 'EulerAncestralDiscreteScheduler', 'UniPCMultistepScheduler', 'KDPM2DiscreteScheduler', 'DPMSolverSinglestepScheduler', 'KDPM2AncestralDiscreteScheduler'] The scheduler to use for the diffusion process. EulerDiscreteScheduler
loras List[hf.lora_sd_config] The LoRA models to use for image processing []
ip_adapter_model hf.ip_adapter The IP adapter model to use for image processing {'type': 'hf.ip_adapter', 'repo_id': '', 'path': None, 'variant': None, 'allow_patterns': None, 'ignore_patterns': None}
ip_adapter_image image When provided the image will be fed into the IP adapter {'type': 'image', 'uri': '', 'asset_id': None, 'data': None}
ip_adapter_scale float The strength of the IP adapter 0.5
pag_scale float Scale of the Perturbed-Attention Guidance applied to the image. 3.0
latents torch_tensor Optional initial latents to start generation from. {'type': 'torch_tensor', 'value': None, 'dtype': '<i8', 'shape': [1]}
enable_attention_slicing bool Enable attention slicing for the pipeline. This can reduce VRAM usage. True
enable_tiling bool Enable tiling for the VAE. This can reduce VRAM usage. True
enable_cpu_offload bool Enable CPU offload for the pipeline. This can reduce VRAM usage. True
output_type Enum['Image', 'Latent'] The type of output to generate. Image
image image The input image to be transformed. {'type': 'image', 'uri': '', 'asset_id': None, 'data': None}
strength float Similarity to the input image 0.5
controlnet hf.controlnet The ControlNet model to use for guidance. {'type': 'hf.controlnet', 'repo_id': '', 'path': None, 'variant': None, 'allow_patterns': None, 'ignore_patterns': None}
control_image image The control image to guide the transformation. {'type': 'image', 'uri': '', 'asset_id': None, 'data': None}

Outputs

Output Type Description
image image  
latent torch_tensor  

Metadata

Browse other nodes in the huggingface.image_to_image namespace.